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Observation: Historical Aerospace
Material Life Cycle

Stages
S1= Revolutionary S3 = Specialty Material
S2 = Emerging S4 = Commodity Material

S1 S2 S3
T1,2 T2,3 T3,4 S4

'Activity'
Level

Time

C.E. Browning, SAMPE, 1999

First Use or
"Insertion"

Maturation
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Aerospace Structural Materials
Development:  How It Happened

Adapted from Fraser, 1998; Wax, 1999

• DoD materials transition opportunities
(systems) have drastically reduced

• Material development time far exceeds
the modern short product cycle
– iterative, empirical development of

“Knowledge Base” is lengthy, data
intensive, and expensive

21st Century Reality Demands that the Paradigm Change!

DKB
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Engineering Design
• Materials Input from

“Knowledge Base” of Data
(Data Sheets, Graphs,
Heuristics, Experience, etc.)

• System/Sub-System Design
is Heavily Computational
and Rapid

• Well Established Testing
Protocols

Materials
Development

• Highly Empirical
• Testing

Independent of Use
• Existing Models

Unlinked

Materials
“Knowledge Base”

The Disconnect!

Major disconnect between
materials development &
components/systems
engineering design

• Known alloy to reliable
part   ~36 months

• Steels for navy landing
gear  15+ yrs

• Lightweight composites
for army vehicles 15+ yrs

• Gamma titanium
aluminides ~30yrs and
counting

• Ceramics for engines -
30+++ ? yrs

• Evolutionary alloy
changes (ship steels,
superalloys, etc) ~7-10
years

Major disconnect between
materials development &
components/systems
engineering design

• Known alloy to reliable
part   ~36 months

• Steels for navy landing
gear  15+ yrs

• Lightweight composites
for army vehicles 15+ yrs

• Gamma titanium
aluminides ~30yrs and
counting

• Ceramics for engines -
30+++ ? yrs

• Evolutionary alloy
changes (ship steels,
superalloys, etc) ~7-10
years

Adapted from Wax, 1999

DKB
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Common 3-D Models,
Analysis Tools,

Database

Performance /
Flow Path

Materials /
Processing 

Manufacturing
& Cost

Design /
Geometry

Structural
Assessments

Secondary 
Flow / Thermal

Integrating Materials & Processes
with Engine Design

Materials & Process "cycle": 7-20 yrsDesign “development cycle”: <3 yrs

Adapted from Schirra, P&W; Evans, et al., AFRL
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AIM Paradigm for Materials R & D

Adapted from Wax, 1999

Time, yrs0 15+

Sequential R & D,
Locally Focused,
Time Dependent

Scope of Knowledge

Old ‘S-curve’
paradigm

Time

Parallel, Linked,
Globally

Optimized R & D
Through

Simulation

New, vertically
integrated systems

paradigm

• Sequential M & P

• Optimized from heuristics

• “Designer Knowledge Base”

NOT Ready Until Final Stages

• Building “Designer Knowledge
Base” begins at outset

• Optimization based on design
IPT need

• Time & effort refines quality of
knowledge base, not its scope

DKB Ready
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IPT /
Materials 
Experts

Life
Prediction 

Prognostics
Reliability

Components
Design, Allowables,

Validation

Cost/Value
Acquisition
Life Cycle

Alloys
Microstructure-

Properties

Processing
Manufacturing 

Suppliers 

Core Sciences & Methods
• Software Linking, Optimization

• Material Representation
• Structure Evolution/Kinetics

•Finite Element Methods
• Error Propagation

•Experimental Validation

Design

Major Components of Designer
Knowledge Base

Adapted from Fraser, OSU; Evans et al., AFRL
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Guiding Constraints

• A key deliverable must be a validated representation of the material and
process: designers work with representations!

• Structural materials design demands confidence in control of time-
dependent properties, thus representations needed for

LCF, HCF, crack growth
creep, stress rupture
environmental degradation, stress corrosion
friction, wear, and fretting

• 'New material' demands rapid, validated representations—but how?

• Need ubiquitous tools for optimization:
a representation framework
efficient validation

Dimiduk & Dutton, 2001

‘Accelerated Insertion’ Rather Than ‘Materials by Design’
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Modeling in the Component Design Process

Rigorous
Quantitative

Models

Structure-
Independent
Continuum

Models

“Design”
Feature stress
analysis, shape

optimization

“Field Experience” corrects for i) microstructure variation, ii) inaccurate
analysis, & iii) incomplete understanding of service environment

“M & P”
Allowables
Database

“Field
Experience”

Heuristics
D
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…
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Iterative
optimization

of
component

shape

Iterative
thermal,

stress, etc.
analysis

3-D code FEM code

Burst
LCF

da/dN
Creep

Includes
Validated
Material
Model

input
parameters

Structure Optimization

Unigraphics ANSYS

Finished
Design

Adapted from J. Schirra, P & W; Parthasarathy & Dimiduk, AFRL
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The Case of Ni-Alloy Engine Disks

Adapted from Backman, GEAE, 2000; Shirra, P&W, 2000

• Continuum codes (i.e., DEFORM) for
thermal history and microstructure
correlation over disk cross-section

• Cross-section may be "zoned" into
a few regions (dual heat treat);
centimeter-scale homogenization

• Empirical yield-strength models, &
flow-curve 'templates,' used to
assign constitutive response

• Variation of structure averaged out;
local microstructure - defect
interactions not represented

• Data-intensive and time-costly
process for yield model and
'constitutive template' validation

Challenges to represent time-dependent failure; to introduce "new material"

A
B

C

Part
Locations

Alloy Spec &
Process Plan

Testing Output

σ

ε

Thermal/strain profiles &
selected area properties
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The “Plasticity Engine” for Properties

Plastic
Heterogeneity

& Strain
Localization

Grain-Level
Statistically-

R V E

ττττ
τs

τo

γγγγ

Slope = h0

h = f(ho,γγγγ)

Focus on  Work-Hardening
Parameterization With µ/s Effects

Conventional Finite Element Model {ττττo, ττττs, m, h}

Continuum Crystal Plasticity {ττττo,i, ττττs,i, m, hij}

Constrained Crystal Plasticity {ττττo,i(khp), ττττs,i, m, hij}

Strain-Gradient Crystal Plasticity {ττττo,i, ττττs,i, m, hij} + ko

increasing
granularity &

compute
complexity

must define ττττ (ρρρρ), ρρρρ (γγγγ))))    to find ko

Properties of
Representative

Volume Element

Define
Features

Design Concept

Parthasarathy & Dimiduk, 2000

Multiaxial FEM
Analysis Of

Polycrystalline,
Polyconstituent

Material
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Compare

Build from Uni- / Multiaxial Slip & Work Hardening

Direct links: computationally challenging & underdeveloped

Microstrain Experiments
for single-, poly- &
polycrystalline slip

Microstructure
Representation

characterize
precipitate

shape parameter
and size/spacing
distribution, etc.

Single-slip & latent-
hardening constitutive
law for single-crystals;

constitutive laws for
polycrystalline RVEs
(UMATs for ‘intrinsic

material’ RVEs)
Scientific Frontier

multiaxial,
gradient test

uniaxial,
crystal test

Predicted
RVE

Response

Dislocation Kinetics
Simulations

Intrinsic length effects,
strain gradients

Numerical/Analytical Model
Representation of

work-hardening from
microstructure variation

~ <10 µm3, 3-D

Existing
links too

weak

Parthasarathy & Dimiduk, 2000
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TIFF
Image (PC) Binary

Image
(PC)

Simulation (Unix)
(pseudo-periodic)

Simulation
superposed on
Microstructure

Rene88DT-Bore 
2.5 x 4  µm

(BEI - S. Menon)

τ =290 MPa

τ =290 MPa

Real Microstructure in Simulations

Rao, Parthasarathy, Menon, Dimiduk & Hazzledine, 2002
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3-D Quantitative Microscopy

Serial Sectioning & Imaging 3-D Rendering of Structure

IN-100 Ni-base Superalloy
Grain Structure and Carbide/Boride Distribution

5 µm

Uchic, Dimiduk, & Simmons, 2002
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3-D Quantitative Microscopy

Uchic, Wheeler, Simmons, DeGraef & Dimiduk, 2001

Serial Sectioning & Imaging

Aligned stack
(~20 nm
spacing)

Rendered 3-D
volume

(~3 µm thick)

14 x 14 µm Image Area 

Ni-Cr-Al Superalloy

Idealized Microstructure

Two point probability

Lineal path

Monte Carlo
Reconstructed
Representative
Microstructure

Mathematical Representation



1-Jan-04 16

Principal Component Analysis
of Microstructure

Simmons & Dimiduk, 2002
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Mechanical Testing of Ultra-Small
Samples for Crystal Properties

• Focus efforts on linking simulation to design
• Small-scale properties measurement for constitutive representations
• Theory for broad understanding of deformation at small scales

Uchic, Dimiduk, Florando & Nix, 2002

Flattened Indenter TipFlattened Indenter Tip

Prior to Test

<110> Ni<110> Ni33Al Single Crystal Al Single Crystal MicrosamplesMicrosamples

Post Test
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Even Simple Models Have a Big Impact

• Integrated structure-property-process models successfully
applied as point solutions
– statistically fit data to mechanistic-based property model
– focused experiments to model microstructural evolution
– accurate estimate of mean behavior

Experience shows concept is sound, projected payoffs reasonable

Shaft design:
 - 1/4  development time
 - 80% reduction in cost

P & W

Adapted from Schirra, P&W, 2000
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• Ultimate Tensile Strength
• 0.2 % Yield Strength
• Tensile Ductilities
• Notch Strength
• Burst Margin
• Creep
• Rupture
• Rupture Ductilities
• Continuous Cycling LCF
• Hold Time LCF
• Continuous Cycling Crack Growth
• Hold Time Crack Growth
• Superplasticity
• Flow Stresses
• Abnormal Grain Growth Resistance
• Gamma Prime Solvus
• Carbide(s) Solvus
• Density

• TIP
• Structural Stability
• Exposed Behavior
• Defect Sensitivity
• Defect Content
• Grain Size
• Gamma Prime Size
• Segregation /Effects
• Inspectibility
• Quench Crack Resistance
• Multi-source Capability
• Low Costs--Elemental and

Processing
• Weldability
• Machinability
• Machined Surface Behavior
• Residual Stresses
• Cost Reduction Potential
• Size/Volume Scaling Effects

Eventually Must Address Full Breadth
of Component Requirements

DARPA - AIM The Issues That
Often Determine

Success or
Failure 

Requirements for Turbine Engine Disks:

Adapted from D. Backman, GEAE



Materials & System Readiness
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Summary

• The time for structural materials development and use must be
shortened (time focus, not cost focus)

• Industrial M & P community demanding a quantum-leap in
relevant engineering simulation capability

• Accelerated Insertion of Materials is the long-term, strategically-
relevant, computational materials science & engineering vision

• Materials Science & Engineering community must produce
integrated predictive tools

• Accelerated insertion demands integration of engineering design
with M & P to achieve true systems engineering of materials
technologies


